Agrobacterium tumefaciens genetic engineering pdf




















Recently, several genomes of desert truffles have been decoded, enabling researchers to attempt genetic manipulations to enable cultivation. To execute such manipulations, the development of molecular tools for genes transformation into truffles is needed. We developed an Agrobacterium tumefaciens -mediated genetic transformation system in T.

We do not own any responsibility for correctness or authenticity of the information presented in this article, or any loss or injury resulting from it.

We do not endorse these articles, we are neither affiliated with the authors of these articles nor responsible for their content. Please see our disclaimer section for complete terms. Agriculture Bioinformatics Applications Biotech Products. Plant transformation: Problems and synthetic cry1Ab and cry1Ac genes are higly toxic to strategies for practical application. Annual Review of Plant striped stem borer and yellow stem borer. Proceedings of Physiology and Plant Molecular Biology Bower, R.

Transgenic sugarcane Christie, P. Agrobacterium tumefaciens T- plants via microproyectile bombardment. The Plant Journal complex transport apparatus: a paradigm for a new family Journal of Bradley L. Attachment of Agrobacterium tumefaciens to Carrot Cells and Arabidopsis wound sites is correlated with the presence Dang, T. Journal of of Agrobacterium tumefaciens is a cytoplasmic membrane Bacteriology Bravo Angel, A.

Das, A and Xie, Y. Construction of transposon provide evidence of tight associations. Journal of Tn3phoA: its application in defining the membrane Bacteriology Molecular Microbiology Firth, N. Structure and function of the F factor and mechanism of conjugation, p. Nature Escherichia coli and Salmonella: cellular and molecular biology 2nd edition. American Society for Microbiology. Deblaere, R.

Schell, J. Efficient octopine Ti plasmid-derived vectors for Fromm, M. Expression Agrobacterium-mediated gene transfer to plants. Nucleic of genes transferred into monocotyledonous and Acid Research Doty, SL, Yu, N. Stable VirA protein of Agrobacterium tumefaciens. Journal of transformation of maize after gene transfer by Bacteriology Douglas C. Fullner, K. Science to plant cell. Herbicide Nicola, Z. Covalently bound VirD2 protein of resistant transgenic sugarcane plants containing the bar Agrobacterium tumefaciens protects the T-DNA from gene.

Crop Science Gheysen, G. Genes Development Herbicide resistant sugarcane Hamilton, C. Gene mediated transformation. Planta Genetic transformation of sugarcane by T-DNA substrate and virulence genes. Proceedings of the Agrobacterium tumefaciens using antioxidants compounds.

Agrobacterium tumefaciens systems important in plant cell transformation by VirB7 lipoprotein is required for stabilization of VirB Agrobacterium tumefaciens, p. ASM apparatus. Press, Washington DC. Filichkin, SA and Gelvin,S. Formation of a Heinemann, J. Molecular Microbiology 8: Herrera-Estrella, A.

Finberg , K. Young, S. A bacterial peptide acting as a plant nuclear Heitritter, S. Proceedings of the VirA protein and this is essential for its biological activity. Herrera-Estrella, L. Transfer and expression of Jin, S. PhD thesis. Laboratory of Genetics, b. Hiei, Y. Efficient transformation of rice Oriza sativa mediated by Agrobacterium and sequence analysis of the boundaries of Jin, S.

The Plant Journal 6: Characterization of a virG mutation that confers constitutive virulence gene expression in Agrobacterium Higgings, C. Gill, D. Binding protein- dependent transport systems. Journal of Bioenergy and Jones, A. Biomembranes Vir B2 is a processed pilin-like protein encoded by the Agobacterium tumefaciens Ti plasmid. Journal of Hille, J. Non- Bacteriology Plant Molecular Kanemoto, R.

Nucleotide sequence and analysis of Hooykaas, P. Plant tumefaciens. Molecular Biology Koncz, C. Huang, Y. In: p. Homologous VirA, a coregulator of Ti-specified virulence genes, is recombination and gene silencing in plants. Kluwer, phosphorylated in vitro. Journal of Bacteriology Dordrecht, The Netherlands. Kuldau, G. The virB operon of Agrobacterium Kumashiro, T. High efficiency transformation of tumefaciens pTiC58 encodes 11 open reading frames. Nature Biotechnology 4: Lehman, C. Iuchi, S.

Nucleic Acid Research Journal of Biological Lessl, M. Common mechanisms in Chemistry Cell Jayaram, M. Phosphoryl transfer if FLP recombination: a template for strand transfer mechanisms. Lessl, M.

Trends Biotechnology. Assaying chimeric genes in plants: DNA transfer. Journal of Biological Chemistry the genes fusion system. Plant Molecular Biology Report Gene transfer Jeon, G.

The role of to cereal cells mediated by protoplast transformation. Agrobacterium tumefaciens pTiA6. Molecules and Cells Matthysse A. Characterization of nonattaching mutants of Agrobacterium tumefaciens.

Journal of Patrau, J. By-products of the cane sugar industry. An introduction to their industrial utilization. In: Sugar Series 11, p. Role of bacterial cellulose fibrils Amsterdam, Netherlands. Peralta, E. T-DNA border sequence required for crown gall tumorigenesis. Matthysse, A. Critical Reviews in Microbiology Perl, A. Establishment of an Agrobacterium-mediated Requirement for genes with homology to ABC transport transformation system for grape Vitis vinifera L.

Nakamura, and H. View at: Google Scholar S. Nonaka, K. Yuhashi, K. Takada, M. Sugaware, K. Minamisawa, and H. View at: Google Scholar M. Thompson, M. Onyeziri, and C. Tufan, and D. Xu, J. Kim, B. Koestler, J. Choi, C. Waters, and C. Amikam and M. Galperin, and M. Feirer, J. Xu, K. Allen et al. Mathews, H. Hannah, H. Samagaio, C. Martin, E. Rodriguez-Rassi, and A. Li and P. Atmakuri, E. Cascales, O. Burton, L.

Banta, and P. Toro, A. Datta, O. Carmi, C. Young, R. Prusti, and E. Pappas and S. Guan, J. Geiger, and C. Groenewold, S.

Hebecker, C. Fritz et al. Bourras, T. Rouxel, and M. Bhattacharjee, L. Lee, H. Oltmanns et al. Shi, L. Lee, and S. Lacroix, M. Vaidya, T. Tzfira, and V. Li, H. Tu, and S. Zaltsman, A. Krichevsky, A. Loyter, and V. Wang, S. Zhang, F. Huang et al. Jarchow, N. Grimsley, and B. Zhang and P. Kalogeraki, J. Zhu, A. Eberhard, E. Madsen, and S. Xu and S. Niu, M. Zhou, C. Henkel, G.

Hak, S. Magori, S. Lazarowitz, and V. Kim, W. Chae, and M. Montoro, N. Teinseree, W. Rattana, P. Kongsawadworakul, and N. Peaucelle, S. Braybrook, and H. Zhu, J.

Nam, J. Humara et al. Gaspar, J. Nam, C. Schultz et al. Xie, A. Williams, A. Edwards, and J. Lind, I. Clarke, and M. Wang, M. Cheng, Q. Yang et al. Hwang and S. Huang, B. Fu, Y. Liu et al. Huang and H. Tsugama, S. Liu, and T. Lapham, L. Lee, D. Lee, T. Mengiste, and S. Wu, Q. Zhao, L. Gao et al. Tsugama, H. Yoon, K. Fujino, S. Djamei, A. Pitzschke, H.

Nakagami, I. Rajh, and H. Tzfira and V. Pitzschke, A. Schikora, and H. Wang, B. Lacroix, J. Guo, and V. Tao, P. Rao, S. Bhattacharjee, and S. Sonti, M. Chiurazzi, D. Wong et al. Endo, Y. Ishikawa, K. Osakabe et al. Park, Z. Vaghchhipawala, B. Vasudevan et al. Kleinboelting, G. Huep, I.

Appelhagen, P. Viehoever, Y. Li, and B. Vasudevan, S. Lee, M. Morsy, and K. Romeijn, R. Hooykaas, and M. Ceballos and W. Shaked, C. Melamed-Bessudo, and A. Yi, K. Mysore, and S. Mysore, J.

Nam, and S. Zheng, X. He, Y. Ying, J. Lu, S. Gelvin, and H. Tenea, J. Spantzel, L. Lee et al. Anand, A.



0コメント

  • 1000 / 1000